Catalan's constant

From Wikipedia, the free encyclopedia

In mathematics, Catalan's constant G, which appears in combinatorics, is defined by

where β is the Dirichlet beta function. Its numerical value is approximately (sequence A006752 in the OEIS)

G = 0.915965594177219015054603514932384110774
Question, Web Fundamentals.svg Unsolved problem in mathematics:
Is Catalan's constant irrational? If so, is it transcendental?
(more unsolved problems in mathematics)

It is not known whether G is irrational, let alone transcendental.

Catalan's constant was named after Eugène Charles Catalan.

The similar but apparently more complicated series

can be evaluated exactly and is equal to π3/32.

Integral identities[]

Some identities involving definite integrals include

where the last three formulas are related to Malmsten's integrals.

If K(k) is the complete elliptic integral of the first kind, as a function of the elliptic modulus k, then

With the gamma function Γ(x + 1) = x!

The integral

is a known special function, called the inverse tangent integral, and was extensively studied by Srinivasa Ramanujan.


G appears in combinatorics, as well as in values of the second polygamma function, also called the trigamma function, at fractional arguments:

Simon Plouffe gives an infinite collection of identities between the trigamma function, π2 and Catalan's constant; these are expressible as paths on a graph.

In low-dimensional topology, Catalan's constant is a rational multiple of the volume of an ideal hyperbolic octahedron, and therefore of the hyperbolic volume of the complement of the Whitehead link.

It also appears in connection with the hyperbolic secant distribution.

Relation to other special functions[]

Catalan's constant occurs frequently in relation to the Clausen function, the inverse tangent integral, the , the Barnes G-function, as well as integrals and series summable in terms of the aforementioned functions.

As a particular example, by first expressing the inverse tangent integral in its closed form – in terms of Clausen functions – and then expressing those Clausen functions in terms of the Barnes G-function, the following expression is obtained (see Clausen function for more):


If one defines the Lerch transcendent Φ(z,s,α) (related to the Lerch zeta function) by


Quickly converging series[]

The following two formulas involve quickly converging series, and are thus appropriate for numerical computation:


The theoretical foundations for such series are given by Broadhurst, for the first formula, and Ramanujan, for the second formula. The algorithms for fast evaluation of the Catalan constant were constructed by E. Karatsuba.

Known digits[]

The number of known digits of Catalan's constant G has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.

Number of known decimal digits of Catalan's constant G
Date Decimal digits Computation performed by
1832 16 Thomas Clausen
1858 19 Carl Johan Danielsson Hill
1864 14 Eugène Charles Catalan
1877 20 James W. L. Glaisher
1913 32 James W. L. Glaisher
1990 20000 Greg J. Fee
1996 50000 Greg J. Fee
August 14, 1996 100000 Greg J. Fee & Simon Plouffe
September 29, 1996 300000 Thomas Papanikolaou
1996 1500000 Thomas Papanikolaou
1997 3379957 Patrick Demichel
January 4, 1998 12500000 Xavier Gourdon
2001 100000500 Xavier Gourdon & Pascal Sebah
2002 201000000 Xavier Gourdon & Pascal Sebah
October 2006 5000000000 Shigeru Kondo & Steve Pagliarulo
August 2008 10000000000 Shigeru Kondo & Steve Pagliarulo
January 31, 2009 15510000000 Alexander J. Yee & Raymond Chan
April 16, 2009 31026000000 Alexander J. Yee & Raymond Chan
June 7, 2015 200000001100 Robert J. Setti
April 12, 2016 250000000000 Ron Watkins
February 16, 2019 300000000000 Tizian Hanselmann
March 29, 2019 500000000000 Mike A & Ian Cutress
July 16, 2019 600000000100 Seungmin Kim

See also[]


  1. Papanikolaou, Thomas (March 1997). "Catalan's Constant to 1,500,000 Places".
  2. Nesterenko, Yu. V. (January 2016), "On Catalan's constant", Proceedings of the Steklov Institute of Mathematics, 292 (1): 153–170, doi:10.1134/s0081543816010107, S2CID 124903059.
  3. Blagouchine, Iaroslav (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results" (PDF). The Ramanujan Journal. 35: 21–110. doi:10.1007/s11139-013-9528-5. S2CID 120943474. Archived from the original (PDF) on 2018-10-02. Retrieved 2018-10-01.
  4. Agol, Ian (2010), "The minimal volume orientable hyperbolic 2-cusped 3-manifolds", Proceedings of the American Mathematical Society, 138 (10): 3723–3732, arXiv:0804.0043, doi:10.1090/S0002-9939-10-10364-5, MR 2661571, S2CID 2016662.
  5. Broadhurst, D. J. (1998). "Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5)". arXiv:math.CA/9803067.
  6. Berndt, B. C. (1985). Ramanujan's Notebook, Part I. Springer Verlag. p. 289.[ISBN missing]
  7. Karatsuba, E. A. (1991). "Fast evaluation of transcendental functions". Probl. Inf. Transm. 27 (4): 339–360. MR 1156939. Zbl 0754.65021.
  8. Karatsuba, E. A. (2001). "Fast computation of some special integrals of mathematical physics". In Krämer, W.; von Gudenberg, J. W. (eds.). Scientific Computing, Validated Numerics, Interval Methods. pp. 29–41.[ISBN missing]
  9. Gourdon, X.; Sebah, P. "Constants and Records of Computation".
  10. "Shigeru Kondo's website". Archived from the original on 2008-02-11. Retrieved 2008-01-31.
  11. Constants and Records of Computation
  12. ^ Large Computations
  13. ^ Catalan's constant records using YMP
  14. Catalan's constant records using YMP
  15. Catalan's constant world record by Seungmin Kim

External links[]